US009443107B2

a2 United States Patent

Dent

US 9,443,107 B2
Sep. 13, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

METHOD FOR PROTECTING THE
INTEGRITY OF A GROUP OF MEMORY
ELEMENTS USING AN AGGREGATE
AUTHENTICATION CODE

Applicant: QUALCOMM Incorporated, San
Diego, CA (US)

Inventor: Alexander W. Dent, San Diego, CA
(US)

Assignee: QUALCOMM Incorporated, San
Diego, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 201 days.

Appl. No.: 13/770,802

Filed: Feb. 19, 2013

Prior Publication Data

US 2014/0237611 Al Aug. 21, 2014

Int. C.

GO6F 7/04 (2006.01)

GO6F 21/64 (2013.01)

GO6F 21/79 (2013.01)

HO4L 9/32 (2006.01)

HO4L 9/08 (2006.01)

HO4L 9/14 (2006.01)

U.S. CL.

CPC oo, GOGF 21/64 (2013.01); GO6F 21/79

(2013.01); HO4L 9/0891 (2013.01); HO4L 9/14
(2013.01); HO4L 9/3242 (2013.01)
Field of Classification Search

CPC GOGF 21/64; GOGF 21/79; HO4L 9/3242;
HO4L 9/14
USPC .o, 726/26; 713/193; 380/277

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,625,819 A * 4/1997 Hoffer, Jr. GOGF 11/1441
6,697,380 B1* 2/2004 Egbert HOAL 45/742
370/412
7,913,092 B1* 3/2011 Hiltunen GOGF 21/54
713/187
8,132,073 B1* 3/2012 Bowers et al. 714/755
8,510,596 B1* 82013 Guptaccceeen GOG6F 11/073
714/15
2002/0018571 Al* 2/2002 Anderson et al. 380/277
2002/0062330 Al* 5/2002 Paaretal. 708/492
2004/0039924 Al* 2/2004 Baldwin et al. . 713/189
2007/0056041 Al* 3/2007 Goodman 726/26
(Continued)

OTHER PUBLICATIONS

Deng et al, Efficiently Authenticating Code Image in Dynamically
Reprogrammed Wireless Sensor Networks, Mar. 13, 2006, IEEE,
pp. 1-5.%*

(Continued)

Primary Examiner — Christopher Brown
Assistant Examiner — Jenise Jackson
(74) Attorney, Agent, or Firm — Loza & Loza, LLP

(57) ABSTRACT

One feature pertains to an efficient algorithm to protect the
integrity of a plurality of data structures by computing an
aggregate message authentication code (MAC) over the
plurality of data structures. An aggregate MAC may be
constructed from a plurality of MAC values associated with
a plurality of data structures. The aggregate MAC binds the
plurality of data structures and attests to their combined
integrity simultaneously. Rather than checking the integrity
of a data structure when it is accessed, the aggregate MAC
is periodically checked or verified, to ascertain the integrity
of all data structures. If the aggregate MAC computed is
different from the previously stored aggregate MAC, then all
data structures that are part of the aggregate MAC are
discarded.

39 Claims, 7 Drawing Sheets

‘ Define a list of memory elements.

}/,, s02

I

Obtain an individual authentication code for vach memory

‘ element.

’/y 504

1

in the list.

Obtain an aggregate authentication code by combining the
individual authentication codes for each memory element

|2 506

!

Store the aggregate authentication code in a secure memory 508
location.

No|

. Time to initiate verification of

aggregate authontication code?

code.

Verify the integrity of the list by comparing a newly
generated instance of an aggregate authentication code over
the memory elements to the stored aggregate authentication

| w512

i

The memory elements are discarded if the integrity

‘ verification fails.

’,,/514

US 9,443,107 B2
Page 2

(56)

2007/0186287
2008/0222368
2009/0089593
2010/0183146
2010/0290617
2010/0306820
2011/0118913
2012/0284523
2014/0056306
2014/0223192

References Cited

U.S. PATENT DOCUMENTS

Al* 82007 Slade ...

Al* 9/2008 Gehrmann
Al* 4/2009 Kuno et al.

Al* 7/2010 Leech

Al 11/2010 Nath
Al 12/2010 Battistello et al.
Al 5/2011 Pretorius et al.

Al* 11/2012 Kolesnikov et al.

Al* 2/2014 Kolesnikov

Al* 82014 Dent et al.

OTHER PUBLICATIONS

Satran et al, Brief Contributions Out of Order Incremental CRC

''''''' 726/27 Computation, Sep. 2005, IEEE, vol. 54, No. 9, pp. 1178-1181.*

T11/152 Kolesnikov V., et al., “MAC aggregation resilient to DoS attacks,”
713/193 2011 IEEE International Conference on Smart Grid Communica-

~~~~~~~~~ 380/28 tions (SmartGridComm), Oct. 2011, pp. 226-231.

Katz, et al. “Aggregate Message Authentication Codes,” ITACS
International Technology Alliance Collaboration System, CT-RSA

..... 713/181 Conference, Apr. 2008, 14 pages.

e 370/393 . .
....... 713/189 * cited by examiner



U.S. Patent Sep. 13,2016 Sheet 1 of 7 US 9,443,107 B2

122 Memory 124
Address y 4

(addr) Inputs 1..n

102
\ Processing
2 Circuit 118 120
N | MAC [\ _
™ Generator AN Key Messages/t/
\
3 MAC | v — L _________ - 116
. \
Verifier | \ | Agoregate MAC Algorithm V%~
'\\ : MAC, Fiey(Message_A) :
\ MACg F kby(Message B) |
104 \ \ . I
i N I
Memory Device \| MACy ery(Message 7) |
N 4
il / l
/ // Aggregate MAC —=-124
/
Memory Space
1062 /7 / 110a
Header Block - A __M:Ag_ é_ (_K/Ig_m_ S_Bzge__A__Ai_dr__)
108a 114
x| Block Reserved Memory d
106b Space - A llob\
Header Block - B | MAC-B (Mem. Space B _Acidr_)
108b
\ Block Reserved Memory 114b
Space - B
I
110c
106¢ y . X
Header Block - Z (MAC-K (Mem. Space K Addr);
= Block Reserved Memory ¢ 126 ¥
Space - Z r————=——---= —--1Y 1
| Aggregate MACa_z

| (MAC-A, MAC-B, ..., MAC-Z) |

e —— ——— —— —— — — — —— — — —



U.S. Patent Sep. 13,2016 Sheet 2 of 7 US 9,443,107 B2

Initialize empty list of elements and obtain an aggregate | =~ 202
authentication code value.

I

Every time a new element is added to the list, a
corresponding MAC value is computed for the new
element and added to the aggregate MAC value.

Every time an element is deleted/removed from the list, a

corresponding MAC value is computed for that element
and subtracted from the aggregate MAC value.

Every time an element in the list is changed, a

corresponding MAC value for that element is computed
and the aggregate MAC value is updated.

'

Store the aggregate MAC in a secure location. 210

=z~ 204

=z~ 206

=~ 208

FIG. 2



Sheet 3 of 7

U.S. Patent Sep. 13, 2016

US 9,443,107 B2

Starting at the first memory element of the list, check that the
format of the memory element is correct and consistent with the
constraints of the list.

y

Compute an individual MAC value for the memory element and
store it in a temporary aggregate MAC variable.

|_ =~ 304

For each subsequent memory element in the list, check that the
format of the list memory element is correct and consistent with
all prior elements of the list.

=~ 3006

A

Compute a corresponding new MAC value for each subsequent
element in the list, and then each corresponding new MAC value
is combined with the temporary aggregate MAC variable, and the

result is stored as the temporary aggregate MAC variable.

=~ 308

y

Compare the temporary aggregate MAC value to the stored
aggregate MAC value.

=~ 310

Is the temporary aggregate
MAC value different from the stored aggregate
MAC value?

Are any of the elements on the list not

311

YES
312

orrect and consistent with the constraints of the list?
NO YES
316 314 /
~a 4 AN
Conclude that the list is not Conclude that the list is corrupt.
corrupt.

FIG. 3



U.S. Patent Sep. 13,2016 Sheet 4 of 7 US 9,443,107 B2

Secure Memory Device

428
\~ Secret Key(s) i
430 .
~ List Generator 410
N Mask(s) ] Circuit/Module 7
432 x| :
{ Prime Number(s) p Element Verifier 12~ 412
434 < Circuit/Module
X List of Elements —
436 Individual MAC
X Generator P 414
N Aggregate MAC Circuit/Module

N\

MAC Aggregation [ 12416
Circuit/Module

!

Y V/ PV

402 \ Processing ,/ 418
Circuit ,/ MAC Updater | 2~
406 NAC —] Circuit/Module
\ Generator [ |
407 \ MAC |
Verifier Verification Triggering . 420
\ Circuit/Module d
\
I \ Temp Individual MAC % 422
404 A > Generator
Memory Device \ Circuit/Module
\
408a N Temp MAC Aggregation | }z~ 424
N \ ircuit/Modul
N Data Structure A \ Circuit/Module
\
\ Aggregate MAC Lz 425
408b\ N Comparator [
T Data Structure B \ Circuit/Module
A
408c
\‘ Data Structure Z

FIG. 4



U.S. Patent Sep. 13,2016 Sheet 5 of 7 US 9,443,107 B2

Define a list of memory elements. = 502

!

Obtain an individual authentication code for each memory |-—=— 504
element.

'

Obtain an aggregate authentication code by combining the |-z~ 506
individual authentication codes for each memory element
in the list.

'

Store the aggregate authentication code in a secure memory [z~ 508
location.

No

510

Time to initiate verification of
aggregate authentication code?

. : o e : . 512

Verity the integrity of the list by comparing a newly =
generated instance of an aggregate authentication code over
the memory elements to the stored aggregate authentication

code.

!

The memory elements are discarded if the integrity
verification fails.

=~ 514

FiG. 5



U.S. Patent Sep. 13,2016 Sheet 6 of 7 US 9,443,107 B2

Obtain a bounded list of n inputs D1, D2, ..., Dn
assocaiated with a memory element, where each input =~ 602
has a length of less than or equal to L.

I

Obtain a prime number p, where p > L. |~ 604
Generate a plurality of n+1 random keys kO, k1, ..., =~ 000
kn, where each key is distributed within the range of

0,1,2,..p-1.
Combine each key in a subset of keys k1, k2, ..., kn with 608

a corresponding input D1, D2, ..., Dn in the list of n
inputs to obtain a plurality of transitory values.

!

Combine the plurality of transitory values and at least
one unused key kO to generate an aggregate =~ 610
authentication code.

I

Store the aggregate code in a secure memory location. |~ 612

FIG. 6



US 9,443,107 B2

Sheet 7 of 7

Sep. 13, 2016

U.S. Patent

L OIA
OVIN _ Cove Syl o
2)eFTIY «—] SeW YOX DVIN 21832135y ST ANHWMMMSQ %<W4AWM@M/%MEV /
PoInoDs < SeForRy : — €0
SOL P q cececens a a
se
1 a/ﬂ 0TL Z-OVIN F-OVIN  V-OVIN
91L

FOVIN
4 XL

[w xopur o[y ——>

[}
1L -2 [ xopur Koy][1]y —»
[0 xopur Asy][o]f —¥

d pow (Ju xapur][u]y,u nduy
o [T xepur ][]y Indug
+[1 xopur &[T [¥41 Induy
+ [0 xopur Aoy][0]4IPPR) = [BA

l4————
WHOSTY ST OV d 1equnN an/ﬂ
u xapur Aoy [ XOPUl A g Txapur Koy z0L vIL
[N I[N [-AN B
' ’ ' u yndug _ | 1mdur (ppe)
‘ ] ‘ / ¢ mduj / SS2IPPY
¢ loea € 3 201L / BOIL Azowdpy
z z 7 01, =
! > | cit
0 0 0

[x][u]y (LT [tlo]a
90L-* qQ9QL-% ©9()L %"

1-d> [ >0
pue [-SINCQ:T SRSV JO Bm/
0L



US 9,443,107 B2

1
METHOD FOR PROTECTING THE
INTEGRITY OF A GROUP OF MEMORY
ELEMENTS USING AN AGGREGATE
AUTHENTICATION CODE

BACKGROUND

1. Field

Various features relate to the protection of memory ele-
ments (e.g., data structures) from attacks by the use of an
aggregate authentication code over a plurality of memory
elements.

2. Background

Heap memory is reserved by a processor and is organized
through the use of a meta-data structure. A meta-data struc-
ture may be a fixed-length data structure which contains
information (e.g., in a header block) about which variable
“owns” the next section of memory (if the memory is
assigned) and the amount of memory that is reserved in the
corresponding memory block. Attackers may wish to corrupt
these meta-data structures (e.g., modify the header blocks) in
order to reduce the amount of free memory or to ensure that
certain important pieces of data are placed into vulnerable
sections of memory. Hence, it is desirable to protect this
meta-data (e.g., data in a data structure or header block of a
memory block) to prevent unauthorized alteration of data
structures.

Therefore, a computationally inexpensive solution is
needed to protect memory elements (e.g., data structures).

SUMMARY

A method of protecting the integrity of elements in a
memory space is provided. A list of memory elements is
defined. The memory elements may be defined within a
single memory heap region. An individual authentication
code may also be obtained for each memory element. An
aggregate authentication code may also be obtained by
combining the individual authentication codes for each
memory element in the list. In one example, the individual
authentication codes may be combined by a reversible
operation. The aggregate authentication code may then be
stored in a memory device. The individual authentication
codes for the elements in the list may be discarded after the
aggregate authentication code is obtained. In one example,
each memory element is a fixed-length data structure within
a header block.

Subsequently, the integrity of the list may be verified by
comparing a newly generated instance of an aggregate
authentication code over the memory elements to the stored
aggregate authentication code. If the integrity verification
fails, the memory elements may be discarded.

Verifying the integrity of the list may be triggered by
expiration of a time-based interval or counter-based between
verifications. In various implementations, the interval
between verifications may be periodic or aperiodic. In one
example, verifying the integrity of the list is performed at an
interval greater than a plurality of accesses of the memory
elements in the list. The integrity of the list of elements may
be verified instead of checking the integrity of each indi-
vidual memory element when it is accessed.

The integrity of the list may also be verified by checking
that each memory element in the list satisfies one or more
constraints.

In one example, the aggregate authentication code may be
updated when a memory element in the list changes by: (a)
removing the previous individual authentication code for the

10

15

20

25

30

35

40

45

55

60

65

2

changed memory element from the aggregate authentication
code; and/or (b) adding a new individual authentication code
for the changed memory element to the aggregate authen-
tication code.

In another example, the aggregate authentication code
may be updated when a memory element is removed from
the list by removing the previous individual authentication
code for the removed memory element from the aggregate
authentication code.

In yet another example, the aggregate authentication code
may be updated when a new memory element is added to the
list by adding a new individual authentication code for the
new memory element to the aggregate authentication code.

The aggregate authentication code may be stored in a
secure memory location. The individual authentication code
for each memory element may be obtained by: (a) obtaining
a bounded list of n inputs associated with the memory
element, where each input has a length of less than or equal
to L; (b) obtaining a prime number p, where p>L; (c)
generating a plurality of random keys, each key distributed
within the range of 0 to p-1; (d) combining each key in a
subset of keys with a corresponding input in the list of n
inputs to obtain a plurality of transitory values; and/or (e)
combining the plurality of transitory values and at least one
unused key to generate the individual authentication code.
Each key in the subset of keys and the corresponding
memory element in the list may be combined by a multi-
plication. The plurality of transitory values may be com-
bined by adding them together and performing a modulo p
operation over the result. The prime number p may be
prefixed and the plurality of random keys may be pre-
generated upon start-up of a processing circuit or initiation
of a session on the processing circuit. The plurality of
random keys may be used for a plurality of aggregate of
verification codes associated with different distinct lists of
memory elements. If the aggregate authentication code is
stored in an insecure memory location, it may be further
protected by a mask prior to storage. If the aggregate
authentication code is stored in a secure memory location, it
may be stored without masking.

According to another aspect, a device is provided com-
prising a memory device coupled to a processing circuit. The
memory device may be adapted to store a list of memory
elements. The processing circuit configured or adapted to:
(a) obtain an individual authentication code for each
memory element; (b) obtain an aggregate authentication
code by combining the individual authentication codes for
each memory element in the list; (c) store the aggregate
authentication code in the memory device, (d) verify the
integrity of the list by comparing a newly generated instance
of an aggregate authentication code over the memory ele-
ments to the stored aggregate authentication code, (e) dis-
card the memory elements if the integrity verification fails.

The memory elements may be defined within a single
memory heap region. Each memory element may be a
fixed-length data structure within a header block. The integ-
rity of the list of elements may be verified instead of
checking the integrity of each individual memory element
when it is accessed.

In one example, verifying the integrity of the list may be
triggered by expiration of a time-based interval or counter-
based between verifications.

In one example, verifying the integrity of the list may be
performed at an interval greater than a plurality of accesses
of the memory elements in the list.



US 9,443,107 B2

3
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating one approach to
protecting a list of memory elements (e.g., data structures in
memory) with an aggregate authentication code.

FIG. 2 illustrates one example of how an aggregate
authentication code may be computed for a list/plurality of
memory elements (e.g., data structures, packets, memory
blocks, etc.).

FIG. 3 illustrates an example of how the integrity of the
elements in a list may be verified using an aggregate
authentication code.

FIG. 4 is a block diagram illustrating an exemplary device
that may be adapted to secure the integrity of a plurality of
elements by use of an aggregate authentication code.

FIG. 5 illustrates a method of protecting the integrity of
elements in a memory space by use of an aggregate authen-
tication code.

FIG. 6 illustrates a method for a low-complexity authen-
tication code algorithm to generate an individual message
authentication code for a memory element.

FIG. 7 illustrates an example of a computationally effi-
cient MAC-Lite algorithm that may serve to compute indi-
vidual authentication codes and an aggregate authentication
code.

DETAILED DESCRIPTION

In the following description, specific details are given to
provide a thorough understanding of the various aspects of
the disclosure. However, it will be understood by one of
ordinary skill in the art that the aspects may be practiced
without these specific details. For example, circuits may be
shown in block diagrams in order to avoid obscuring the
aspects in unnecessary detail. In other instances, well-known
circuits, structures and techniques may not be shown in
detail in order not to obscure the aspects of the disclosure.

The word “exemplary” is used herein to mean “serving as
an example, instance, or illustration.” Any implementation
or aspect described herein as “exemplary” is not necessarily
to be construed as preferred or advantageous over other
aspects of the disclosure. Likewise, the term “aspects” does
not require that all aspects of the disclosure include the
discussed feature, advantage or mode of operation.
Overview

An efficient algorithm is provided to protect the integrity
of a plurality of data structures by computing an aggregate
message authentication code (MAC) over the plurality of
data structures. An aggregate MAC may be constructed from
a plurality of MAC values associated with a plurality of data
structures. The aggregate MAC binds the plurality of data
structures and attests to their combined integrity simultane-
ously.

The aggregate MAC can be formed, for example, by
XOR-ing any number of individual MAC values (subject to
the condition that each MAC is computed on a different data
structure). Using XORing operations (or any other self-
inverting operation) also allows the aggregate MAC to be
updated quickly. If a data structure changes, then the original
MAC value corresponding to the original instance of the
data structure is stripped from the aggregate MAC and the
new MAC value for the new instance of the data structure is
added into the aggregate MAC.

Additionally, according to another aspect, rather than
checking the integrity of a data structure when it is accessed,
the aggregate MAC is periodically checked or verified, to
ascertain the integrity of all data structures. If the aggregate

10

15

20

25

30

35

40

45

50

55

60

65

4

MAC computed is different from the previously stored
aggregate MAC, then all data structures that are part of the
aggregate MAC are discarded. Thus, rather than spending
resources every time one of the data structures is accessed,
the aggregate MAC is verified periodically. This approach
may save significant processing resources as the integrity of
a data structure is verified less frequently.

Exemplary Aggregate MAC Computation

FIG. 1 is a block diagram illustrating one approach to
protecting a list of memory elements (e.g., data structures in
memory) with an aggregate authentication code. A process-
ing circuit 102 may be coupled to, and/or or integrates, a
memory device 104 or storage. The memory device 104 may
include memory space that is arranged as memory blocks
114a, 1145, and/or 114c¢. Each memory block 114a, 1145,
114¢ may include a header block 1064, 1065, and 106¢, and
a corresponding block reserved memory space 108a, 1085,
and 108c. The header block 106 may serve to store a data
structure (e.g., meta-data structure).

The processing circuit 102 may be configured to imple-
ment a MAC generator 112 that computes an individual
MAC 1104, 1105, 110¢ for each header block 106 (e.g., data
structure) or memory block 114 and then computes an
aggregate MAC, , 126 by combining the individual MACs
110qa, 1105, and 110c¢.

In one example, the MAC generator (e.g., a processing
circuit or module) may implement a particular MAC algo-
rithm 116 (e.g., Hash-based Message Authentication Code
(HMAC)-Secure Hash Algorithm 1 (SHA-1), Advanced
Encryption Standard (AES)-cipher-based MAC (CMAC),
and Data Authentication Algorithm (DAA), etc.). Other
types of authentication code algorithms are also contem-
plated herein. The aggregate MAC algorithm 116 may
accept as input a secret key 118 and/or a plurality of
arbitrary-length messages 120 to be authenticated, and out-
puts an aggregate MAC 124. The aggregate MAC algorithm
116 computes individual MACs for each input message, and
combines (e.g., in a reversible operation) the individual
MAC:s into the aggregate MAC 124. The aggregate MAC
124 allows the integrity of the plurality of messages (e.g.,
data structures) to be verified by detecting any changes to the
messages (e.g., header block 106, data structure, and/or
memory block 114).

In various examples, the MAC algorithm 116 may
include, as part of the “message” input 120, a memory
address 122 at which the header block begins, the block
reserved memory space begins, and/or where specific meta-
data in the data structure is held. Additionally, the MAC
algorithm 116 may also include, as part of each “message”
input 120, other inputs 1 . . . n 124 such as content of the
header block (e.g., data structure stored therein). Because an
individual MAC is computed based on at least some of the
information in the corresponding header block (e.g.,
memory address for the memory block or block reserved
memory space, size of memory block, or block reserved
memory space, etc.), any attempt to tamper with any of the
header blocks, the address for the memory blocks, or block
reserved memory space, and/or size of the corresponding
memory block, and/or block reserved memory space can be
detected by verifying the corresponding aggregate MAC
124.

A MAC verifier 113 within the processing circuit 102
serves to periodically or asynchronously/aperiodically check
and verify the aggregate MAC to ascertain the integrity of
the data structure associated with the individual MACs.
Such verification of the aggregate MAC may be performed
in lieu of verifying a data structure, block header, and/or



US 9,443,107 B2

5

memory block when it is accessed. For instance, if a memory
block 114a (e.g., and/or the data structure in the correspond-
ing header block 1064) is accessed often, which is likely in
the case where the data structure holds the information about
memory allocation for a heap memory structure, then veri-
fication of the individual MAC 110a on every access may
consume unacceptable processing resources. Consequently,
these processing resources may be saved by avoiding indi-
vidual MAC verification when accessing a data structure,
block header 1064, and/or memory block 114a. Instead of
checking the individual MACs 110a, 1105, 110c¢ when the
data structure or header block 106a, 1065, 106¢ is accessed,
a less frequent verification of the aggregate MAC, , 126
may be performed. For example, the aggregate MAC, ,126
may be checked every n accesses of data structures or header
blocks, where n=10, 50, 100, 200, etc. In another example,
the aggregate MAC, , 126 may be checked periodically,
e.g., every 1 second, 3 seconds, 10 seconds, etc. In other
instances, other time-based or counter-based interval may be
used to trigger an aggregate MAC verification. The
interval(s) between aggregate MAC verifications may be
sufficiently long that it takes less processing resources to
perform the aggregate MAC verification for a plurality of
data structures instead of individual MAC verification for
each data structure. Such aggregate MAC verification may
be performed, for example, by a memory controller circuit
(e.g., implemented within the processing circuit 102), an
operating system, and/or other low-level application.

FIG. 2 illustrates one example of how an aggregate
authentication code may be computed for a list/plurality of
memory elements (e.g., data structures, packets, memory
blocks, etc.). To compute the aggregate MAC, an empty list
of elements list is initialized (e.g., bitwise aggregate
MAC=“000000") and an aggregate MAC value is obtained
202. For instance, the aggregate MAC value may be set to
be an appropriately-sized string of zeroes. Every time a new
memory element is added to the list, a corresponding MAC
value is computed for that element and added (e.g., by a
reversible operation, such as a XOR operation) to the
aggregate MAC value 204. For example, for a new element
having a MAC=“000101", the wupdated aggregate
MAC=<000000" XOR “000101”=°000101".

Every time an element is deleted from the list, a corre-
sponding MAC value is computed for that element and
subtracted/removed (e.g., XORed) from the aggregate MAC
value 206. For example, starting with an aggregate
MAC=“000101", for an element to be deleted having a
MAC=“000100", the updated aggregate MAC=“000101"
XOR “000100”=+000001".

Every time an element in the list is changed, a corre-
sponding MAC value for that element is computed and the
aggregate MAC value is updated 208. For instance, the
aggregate MAC value may be updated by subtracting/
removing the previous MAC value corresponding to the
element (e.g., using a XOR operation) and then adding/
combining (e.g., using a XOR operation) the new MAC
value (e.g., using a XOR operation). For example, if the
aggregate MAC="000101", and an element changes from
“001001” to “010010”, then the updated aggregate
MAC=<000101" XOR “001001” XOR
“010010”=7011110". Note that, in addition to a logic XOR
operation, other invertible operations may be used to add
and/or remove MAC values to/from an aggregate MAC.

In another example, rather than subtracting the previous
MAC for the element and adding the new MAC to the
aggregate MAC, the aggregate MAC may be recomputed
using the new MAC for the element along with the indi-

20

25

40

45

60

6

vidual MACs for the other elements in the list. The aggre-
gate MAC may then be stored in a secure location 210.

FIG. 3 illustrates an example of how the integrity of the
elements in a list may be verified using an aggregate
authentication code. Starting at the first element of the list,
the format of each element may be checked to make sure it
is correct and consistent with the constraints of the list 302.
For example, this check may verify that an element has not
been surreptitiously added to the list and/or that an element
in the list has not been corrupted and/or surreptitiously
modified (e.g., length/size of element has been changed,
etc.).

An individual MAC value of the list element is then
computed and stored in a temporary aggregate MAC vari-
able 304. For each subsequent element in the list (which can
be identified from the prior element), check that the format
of the element is correct and consistent with all prior
elements of the list and the constraints of the list 306. A
corresponding new individual MAC value is computed for
each subsequent element, and then each corresponding new
individual MAC value is combined (e.g., XORed) with the
temporary aggregate variable, and the result is stored as the
temporary aggregate MAC variable 308. Once every ele-
ment of the list has been considered, the temporary aggre-
gate MAC value is compared to the stored aggregate MAC
value 310. If the temporary aggregate MAC value is differ-
ent from the stored aggregate MAC value 311 or any of the
elements on the list is not correct and consistent with the
constraints of the list 312, then it may be concluded that the
list is corrupt 314. Otherwise, it may be concluded that the
list is not corrupt 316. This procedure may check or verify
the integrity of the list of elements: (a) when an element in
the list altered, modified, or changed, (b) in response to some
other aperiodic trigger event, and/or (c) periodically trig-
gered by a timer. That is, in contrast to some other integrity
checking/verification approaches that may perform MAC
verification upon accessing data stored in a corresponding
memory area (e.g., corresponding to an element in the list,
such as a data structure), the present approach may verify the
aggregate MAC value at other intervals or instances (e.g.,
when the data secured by the aggregate MAC value is not
necessarily when being accessed or retrieved). In some
examples, the integrity of each individual element in the list
may not be verified upon accessing corresponding data in
memory but instead relies on verification of the aggregate
MAC value. If verification of the aggregate MAC value
fails, the whole list of elements may be considered compro-
mised/corrupt and may be discarded. Additionally, the sys-
tem(s), processing circuit(s), and/or application(s) that use
one or more elements in the list may be reset, rebooted,
and/or restarted if it is concluded or assumed that the
aggregate MAC value verification fails.

FIG. 4 is a block diagram illustrating an exemplary device
that may be adapted to secure the integrity of a plurality of
elements by use of an aggregate authentication code. The
device may include a processing circuit 402 coupled to a
separate or integrated memory device 404. The processing
circuit 402 may include a message authentication code
(MAC) generator 406 that may be adapted to generate an
aggregate MAC for a plurality of data structures 408a, 4085,
and 408c, stored in the memory device 404 to secure the
integrity of the plurality of data structures.

The MAC generator 406 may include a plurality of
circuits and/or modules that implement one or more func-
tions or steps to generate the aggregate MAC. A list gen-
erator circuit/module 410 may serve to build a list of
elements 434, such as a plurality of the data structures 408a,



US 9,443,107 B2

7

4085, and 408c¢ in the memory device 404. An element
verifier circuit/module 412 may serve to verify that the
elements satisfy any conditions and/or constraints associated
with the list. An individual MAC generator circuit/module
414 may implement a MAC algorithm that computes an
individual MAC for each element (e.g., data structure) in the
list. To do this, the MAC generator circuit/module 414 may
obtain one or more secret keys 428, masks, 430, and/or a
prime number 432 from a secure memory device 426, a
secure location within the processing circuit 402, or the
memory device 404, and use them to compute the individual
MAC:s. Each individual MAC may be added to an aggregate
MAC 436 by a MAC aggregation circuit/module 416. For
example, a plurality of individual MACs (MAC-A, MAC-B,
MAC-C, . .., MAC-Z), each corresponding to a different
element in the list of elements 434, may be combined by
self-inverting operations (e.g., aggregate MAC=MAC-A
XOR MAC-B XOR MAC-C XOR . . . MAC-Z). The
aggregate MAC 432 may be updated, by a MAC updater
circuit/module 418, when or if an element previously added
to the list 430 changes or is removed. For example, when a
new element is added to the list of elements 434, the
corresponding individual MAC (e.g., MAC-new) may be
added to the aggregate MAC 436 by using a self-inverting
operation (e.g., updated aggregate MAC=old aggregate
MAC XOR MAC-new). Similarly, when an element is
removed from the list of elements 434, the corresponding
individual MAC (e.g., MAC-remove) may be removed from
the aggregate MAC 436 by using a self-inverting operation
(e.g., updated aggregate MAC=old aggregate MAC XOR
MAC-remove). Likewise, when an element from the list of
elements 434 changes and needs to be updated, the corre-
sponding old individual MAC (e.g., MAC-0ld) may be
removed from the aggregate MAC 436 and the correspond-
ing new individual MAC (e.g., MAC-new) may be added to
the aggregate MAC 436 by using a self-inverting operation
(e.g., updated aggregate MAC=old aggregate MAC XOR
MAC-old XOR MAC-new). Note that the self-inverting
operation used to add an individual MAC may be the same
operation used to remove and/or update the individual
MAC.

The processing circuit 402 may also include a MAC
verifier 407 that is adapted to verify the aggregate MAC 436
upon a triggering event (e.g., aperiodic) and/or periodically.
The MAC verifier 407 may include a verification triggering
circuit/module 420 that indicates when an aggregate MAC
should be verified. For instance, the verification triggering
circuit/module 420 may operate off a periodic or aperiodic
timer, an event counter, or an external event. In one example,
a periodic timer may be setup and the verification triggering
circuit/module 420 triggers an aggregate MAC verification
at the interval indicated by such timer. In another example,
a counter of element accesses is maintained (e.g., how many
times the elements in the list have been accessed since the
last verification) and used by the verification triggering
circuit/module 420 to initiate an aggregate MAC verification
when a triggering number is reached. Note that the MAC
verifier 407 may reuse and/or share one or more of the
circuits/modules in the MAC generator 406. For instance, in
order to perform one or more of its functions, the MAC
verifier 407 may use and/or access the element verifier
circuit/module 412 (e.g., to make sure an element has not
been compromised and/or still satisfies the constraints asso-
ciated with the list). Similarly, the individual MAC genera-
tor circuit/module 414 and/or MAC aggregation circuit/
module 416 may be reused by one or more of the circuits/
modules of the MAC verifier 407 to perform the aggregate

10

15

20

25

30

35

40

45

50

55

60

65

8

MAC verification functions (e.g., compute individual MACs
for the list of elements and compute a temporary aggregate
MAC to compare to the existing aggregate MAC).

Upon accessing a data structure, for a write operation or
read operation, a key selector circuit/module 414 may select
a plurality of keys from the set of keys 428 based on at least
one input associated with the data structure (e.g., a variable
memory address for the data structure, etc.). Similarly, a
mask selector circuit/module 416 may select a mask from
the set of masks 430 based on the at least one input (e.g., a
variable memory address for the data structure, etc.) or a
different one or more inputs associated with the data struc-
ture.

A MAC comparator circuit/module 424 may serve to
check the integrity of a data structure by comparing a
previously stored MAC value for the data structure to a
dynamically computed MAC value (from the mask combin-
ing circuit/module 422).

FIG. 5 illustrates a method of protecting the integrity of
elements in a memory space by use of an aggregate authen-
tication code. A list of memory elements is defined 502 and
an individual authentication code is obtained for each
memory element 504. An aggregate authentication code is
then obtained by combining the individual authentication
codes for each memory element in the list 506. The aggre-
gate authentication code is then stored in a secure memory
location 508.

Subsequently, a determination is made if it is time to
initiate verification of the aggregate authentication code 510.
Such determination may be made, for example, based on a
counter or timer (e.g., either periodic or event triggered). For
instance, a timer may be used to track a periodic interval at
which the aggregate authentication code is verified or
checked. In another example, a counter may track the
number of elements (e.g., data structures in memory) have
been accessed since the last verification was performed, and
if it is equal to or greater than a threshold number, then
verification of the aggregate authentication code is per-
formed.

In an example where the memory elements are memory
blocks or data structures (e.g., within heap memory), rather
than checking the authentication code for each memory
block or data structure individually when such memory
block or data structure is accessed, only the aggregate
authentication code is checked (verified) for the whole list of
elements. The interval between verifications of the aggre-
gate authentication code may be longer than typical intervals
between individual memory block or data structure verifi-
cations. In one example, the interval between verifications
may be greater than a plurality of accesses (e.g., 5, 10, 30,
50, 10, or 300 accesses) of the memory elements in the list.

The aggregate authentication code, which serves to secure
the integrity of the list of elements, may be verified by
comparing a newly generated instance of an aggregate
authentication code over the memory elements to the (pre-
viously) stored aggregate authentication code 512. The
memory elements in the list are discarded (e.g., flushed,
deleted, etc.) if the integrity verification fails 514. In one
example, the integrity of the list of elements is verified
instead of checking each individual element when it is used.
The individual authentication codes for the elements may be
discarded after the aggregate authentication code is
obtained. Additionally, the integrity of the list may be
verified by checking that each element in the list satisfies one
or more constraints. In one example, the memory elements
may be defined within a single memory heap region. For
instance, each memory element may be a fixed-length data



US 9,443,107 B2

9

structure (e.g., meta-data structures) within a header block.
The individual authentication codes may be aggregated, for
example, by a reversible operation (e.g., XOR operation). In
some implementations, the individual authentication codes
may be discarded after the aggregate authentication code is
generated or updated, thus

The aggregate authentication code may be updated when
an element changes by: (a) removing the previous individual
authentication code for the element from the aggregate
authentication code; and/or (b) adding a new individual
authentication code for the element to the aggregate authen-
tication code. Similarly, the aggregate authentication code
may be updated when an element is removed from the list by
removing the previous individual authentication code for the
element from the aggregate authentication code. Likewise,
the aggregate authentication code may be updated when a
new element is added to the list by removing the previous
individual authentication code for the element from the
aggregate authentication code.

Exemplary Low-Complexity MAC Algorithm

The examples of authentication code aggregation illus-
trated in FIGS. 1-5 may work with any existing MAC
algorithm (e.g., HMAC-SHA-1, AES-CMAC, DAA, etc.) to
compute the individual MACs. Additionally, various com-
binatorial operations may be used to combine the individual
MAC:s into the aggregate MAC, although it is most efficient
when used with an aggregate MAC algorithm that has an
efficient procedure for adding and removing individual
MAC values (e.g., such reversible operations, XOR, etc.).

In some implementations, if the aggregate MAC value is
stored in an area of memory to which an attacker cannot be
reasonably assumed to have read access (e.g., a secure
memory device), then all elements (e.g., individual MACs,
keys, etc.) of the aggregate MAC value construction which
are required to protect the confidentiality of certain data in
the aggregate MAC construction can be removed or dis-
carded.

In one implementation, a MAC based on universal hash-
ing, referred to as UMAC, may be used in the construction
of the individual MACs for each element in a list. Typical
UMACs are a type of MAC that use a computationally
expensive pseudorandom function (PRF) computation and a
nonce to protect the confidentiality of an underlying univer-
sal hash by XORing the output of the universal hash function
with the output of the PRF (evaluated on the nonce) which
serves as a mask.

In one aspect, this (expensive) mask can be removed, if
the individual MAC value is stored in an area of memory to
which the attacker has no read access.

FIG. 6 illustrates a method for a low-complexity authen-
tication code algorithm to generate an individual message
authentication code for a memory element. For each
memory element, a corresponding plurality of inputs may be
obtained. The inputs may be, for example, an address, data
segments, variables, etc., corresponding to or found within
a memory element. For example, if the memory element is
a memory block, the inputs may be a memory address where
a corresponding header block is located and information
found in a header block for the memory block.

If the list inputs are of bounded size (as is the case in heap
memory data structures) then a simple affine transformation
may act as a “MAC” for the purposes of constructing an
individual MAC value for each memory eclement. For
example, a bounded list of n inputs D1, D2, . . . , Dn
associated with the memory element is obtained, where each
input has a length of less than or equal to L. 602. Also, a
prime number p is obtained, where p>L 604. A plurality of

20

35

40

45

55

10

n+1 random keys k0, k1, . . ., kn are generated, where each
key is (an integer) distributed (e.g., uniformly) within the
range 0, 1, 2, . . ., p—1 606. Note that, the plurality of n+1
random keys kO, k1, . . . , kn may be pre-generated, for
example, prior to boot-up or start-up and/or during a session
initiation and used in generating the individual authentica-
tion codes for one or more distinct lists of memory elements
from which the aggregate authentication code is obtained. In
one example, the prime number p may be prefixed and the
plurality of random keys is pre-generated upon start-up of a
processing circuit or initiation of a session on the processing
circuit. Such plurality of random keys may be used, for
example, for the duration of a session (between start-ups) for
a plurality of authentication codes associated with different
memory regions and/or distinct lists of memory elements.
Alternatively, the random keys may be dynamically gener-
ated when needed to generate an individual authentication
code and/or an aggregate authentication code.

Each key in a subset of keys k1, k2, . . ., ka is combined
(e.g., by a multiplication operation, by a logic operation,
etc.) with a corresponding input D1, D2, . . ., Dn in the list
of n inputs to obtain a plurality of transitory values 608.
Each of the inputs D1, D2, . . ., Dn may be converted or
interpreted as a number for purposes of this combination
operation (e.g., arithmetic or logic operation). For instance,
each input may be treated as a bit string where the value of
the bit string is treated as an integer number). In one
example, the combination of each key and corresponding
input may be by a multiplication operation to obtain a
transitory value. An individual authentication code may then
be generated by combining the plurality of transitory values
and at least one unused or additional key k0 610. For
instance, such combination of transitory values and at least
one unused key may be through arithmetic operations, such
as addition operations, or logic operations. Additionally, a
modulo operation (using the prime number p) may also be
performed on the authentication code. The aggregate
authentication code may then be stored in a secure memory
location or device 612.

In one example, an individual MAC=(k0+k1xD1+k2x
D2+ . .. +knxDn) (modulo p), where “x” denotes multipli-
cation modulo p. In comparison to traditional cryptographic
MAC algorithms that rely on a PRF to generate a mask, this
is very efficient approach since such computationally expen-
sive operation is avoided.

In a subsequent access of the fixed-length data structure,
its integrity may be verified by regenerating the message
authentication code and comparing it to a previously stored
message authentication code for the same data structure.

FIG. 7 illustrates an example of a computationally effi-
cient MAC-Lite algorithm 702. This MAC-Lite algorithm
702 may be implemented, for example, by the MAC gen-
erator 414 in FIG. 4 to efficiently implement the individual
MACs.

In this approach, a set of keys 704 and/or masks 706 may
be pre-generated at boot-time and/or startup and may be
subsequently used (e.g., during an entire session) to generate
individual MACs for one or more memory blocks or ele-
ments of an aggregate authentication code. For instance, a
plurality of keys 704 k[0][0], . . . , k[n][NK-1] may be
randomly or pseudo-randomly generated (e.g., generated
based on a random or pseudo-random value). In this
example, the plurality of keys 704 k[0][0], . . ., k[n][NK-1]
have been grouped into a plurality of subsets 706a,
7065, and 706c, including a first subset of keys
706a k[0][0], ..., k[0][NK-1], a second subset of keys 7065
k[1][0], . . ., k[1][NK~-1], and a third subset of keys 706¢



US 9,443,107 B2

11

k[n][0], . . ., k[n][NK-1]. These key values should be secret
and unchangeable by a potential attacker.

In this example of the MAC-Lite algorithm 702 may take
as inputs: a plurality of inputs Input_1 710a, Input_2 7105,
and Input_n 710c¢, a variable memory address 712, a pre-
selected or pre-determined prime number p 714, and/or a
selected plurality of keys 718 selected from the set of keys
704. In one example, the key values k[0][0], . . . , k[n][NK-
1], in the set of keys 704, may be between 0 and p-1
(inclusive).

For a given memory block, an individual MAC may be
generated using the MAC-Lite algorithm 702. The plurality
of'keys 718 may be selected from the set of keys 704 based
on, for example, one or more indices generated from the
variable memory address 712. For example, a function f and
the variable memory address 712 addr may serve to generate
the key indices: f(addr)=key_index_ O, . . . , key_index_n.
For instance, each of the key indices may be between integer
values 0 and NK-1. Consequently, the selected set of keys
718 may be selected from each of the subsets 706a, 7065,
and 706¢ of the plurality of keys 704.

The selected plurality of keys 718, the prime number p
714, and the variable memory address 712, input_1 710a,
input_2 7104, . . ., input_n 710 may be combined in a way
that produces a MAC output that is hard to predict. For the
case of memory management, the variable memory address
(addr) 712 may be, for example, a starting address for a
header block of memory structure. Likewise, the plurality of
other inputs input_1 710a, input_2 71054, . . . , input_n 710¢
may be different variables or data segments in the data
structure or header block. The MAC-Lite algorithm 702 may
be parameterized by the prime number p 714 which may be
larger than any possible individual input (e.g., k[j][i]=p-1),
which can be determined owing to the assumption that the
input characteristics for the MAC-Lite algorithm 702 are
known. This prime number p 714 may be smaller than some
possible inputs (e.g., selected keys 718, memory address
712, and/or inputs 710) as long as it is possible to efficiently
map the set of a possible inputs to a set of inputs that are all
guaranteed to be less than the prime number p 714 in a
bijective way. This also allows small inputs to be combined
into one larger input variable. This prime number p 714 can
be made public, but should not be changeable by an attacker.

In an alternative implementation, the keys (e.g., selected
keys 718) and inputs (e.g., memory address 712, and/or
inputs 710) may also be implemented using an arbitrary
finite field GF(2"n) by mapping the keys and/or inputs into
elements of the finite field.

In one example, the MAC-Lite algorithm 702 may gen-
erate a MAC value 713 as:

MAC value=addr*key[0][key_index_O]+input_1*%[1]
[key_index_1]+input_2*k[2][key_
index_2]+ . . . +input_n*key[#][key_index_#]
mod p.

In this manner, a plurality of MAC values (MAC-A, MAC-
B, ..., MAC-Z) may be computed for a plurality of memory
blocks.

Then, a combiner 703 may combine the plurality of
individual MAC values to generate an aggregate MAC 720.
The aggregate MAC may then be stored in a secure memory
location, without the need of masking.

Otherwise, if the aggregate authentication code is stored
in an insecure memory location, a mask 716 may be used to
secure 705 the aggregate MAC (e.g., by XORing the aggre-
gate MAC 720 with the mask 716) such that:

Secured_Aggregate. MAC=Aggregate. MAC XOR
mask.

10

15

20

25

30

35

40

45

50

55

60

65

12

One or more of the components, steps, features, and/or
functions illustrated in the Figures may be rearranged and/or
combined into a single component, step, feature or function
or embodied in several components, steps, or functions.
Additional elements, components, steps, and/or functions
may also be added without departing from the invention.
The apparatus, devices, and/or components illustrated in the
Figures may be configured to perform one or more of the
methods, features, or steps described in the Figures. The
algorithms described herein may also be efficiently imple-
mented in software and/or embedded in hardware.

Moreover, in one aspect of the disclosure, the processing
circuit 102 and/or 402 illustrated in FIGS. 1 and 4 may be
a specialized processor (e.g., an application specific inte-
grated circuit (e.g., ASIC)) that is specifically designed
and/or hard-wired to perform the algorithms, methods, and/
or steps described in FIGS. 2, 3, 5, 6 and/or 7. Thus, such a
specialized processor (e.g., ASIC) may be one example of a
means for executing the algorithms, methods, and/or steps
described in FIGS. 2, 3, 5, 6 and/or 7. The processor-
readable storage medium may store instructions that when
executed by a specialized processor (e.g., ASIC) causes the
specialized processor to perform the algorithms, methods,
and/or steps described herein.

Also, it is noted that the aspects of the present disclosure
may be described as a process that is depicted as a flowchart,
a flow diagram, a structure diagram, or a block diagram.
Although a flowchart may describe the operations as a
sequential process, many of the operations can be performed
in parallel or concurrently. In addition, the order of the
operations may be re-arranged. A process is terminated when
its operations are completed. A process may correspond to a
method, a function, a procedure, a subroutine, a subprogram,
etc. When a process corresponds to a function, its termina-
tion corresponds to a return of the function to the calling
function or the main function.

Moreover, a storage medium may represent one or more
devices for storing data, including read-only memory
(ROM), random access memory (RAM), magnetic disk
storage mediums, optical storage mediums, flash memory
devices and/or other machine-readable mediums and, pro-
cessor-readable mediums, and/or computer-readable medi-
ums for storing information. The terms “machine-readable
medium”, “computer-readable medium”, and/or “processor-
readable medium” may include, but are not limited to
non-transitory mediums such as portable or fixed storage
devices, optical storage devices, and various other mediums
capable of storing, containing or carrying instruction(s)
and/or data. Thus, the various methods described herein may
be fully or partially implemented by instructions and/or data
that may be stored in a “machine-readable medium”, “com-
puter-readable medium”, and/or “processor-readable
medium” and executed by one or more processors, machines
and/or devices.

Furthermore, aspects of the disclosure may be imple-
mented by hardware, software, firmware, middleware,
microcode, or any combination thereof. When implemented
in software, firmware, middleware or microcode, the pro-
gram code or code segments to perform the necessary tasks
may be stored in a machine-readable medium such as a
storage medium or other storage(s). A processor may per-
form the necessary tasks. A code segment may represent a
procedure, a function, a subprogram, a program, a routine,
a subroutine, a module, a software package, a class, or any
combination of instructions, data structures, or program
statements. A code segment may be coupled to another code
segment or a hardware circuit by passing and/or receiving



US 9,443,107 B2

13

information, data, arguments, parameters, or memory con-
tents. Information, arguments, parameters, data, etc. may be
passed, forwarded, or transmitted via any suitable means
including memory sharing, message passing, token passing,
network transmission, etc.

The various illustrative logical blocks, modules, circuits,
elements, and/or components described in connection with
the examples disclosed herein may be implemented or
performed with a general purpose processor, a digital signal
processor (DSP), an application specific integrated circuit
(ASIC), a field programmable gate array (FPGA) or other
programmable logic component, discrete gate or transistor
logic, discrete hardware components, or any combination
thereof designed to perform the functions described herein.
A general purpose processor may be a microprocessor, but
in the alternative, the processor may be any conventional
processor, controller, microcontroller, or state machine. A
processor may also be implemented as a combination of
computing components, e.g., a combination of a DSP and a
microprocessor, a number of microprocessors, one or more
microprocessors in conjunction with a DSP core, or any
other such configuration.

The methods or algorithms described in connection with
the examples disclosed herein may be embodied directly in
hardware, in a software module executable by a processor,
or in a combination of both, in the form of processing unit,
programming instructions, or other directions, and may be
contained in a single device or distributed across multiple
devices. A software module may reside in RAM memory,
flash memory, ROM memory, EPROM memory, EEPROM
memory, registers, hard disk, a removable disk, a CD-ROM,
or any other form of storage medium known in the art. A
storage medium may be coupled to the processor such that
the processor can read information from, and write infor-
mation to, the storage medium. In the alternative, the storage
medium may be integral to the processor.

Those of skill in the art would further appreciate that the
various illustrative logical blocks, modules, circuits, and
algorithm steps described in connection with the aspects
disclosed herein may be implemented as electronic hard-
ware, computer software, or combinations of both. To
clearly illustrate this interchangeability of hardware and
software, various illustrative components, blocks, modules,
circuits, and steps have been described above generally in
terms of their functionality. Whether such functionality is
implemented as hardware or software depends upon the
particular application and design constraints imposed on the
overall system.

The various features of the invention described herein can
be implemented in different systems without departing from
the invention. It should be noted that the foregoing aspects
of the disclosure are merely examples and are not to be
construed as limiting the invention. The description of the
aspects of the present disclosure is intended to be illustra-
tive, and not to limit the scope of the claims. As such, the
present teachings can be readily applied to other types of
apparatuses and many alternatives, modifications, and varia-
tions will be apparent to those skilled in the art.

What is claimed is:

1. A method of protecting the integrity of elements in a
memory space, comprising:

defining a list of inputs associated with the memory

elements in the memory space;

generating an individual authentication code for each

memory element in the list by combining a random key
with a corresponding input in the list using a first
operation;

10

20

30

40

45

50

55

65

14

generating an aggregate authentication code by combin-
ing the individual authentication codes for each
memory element in the list using a second operation;

storing the aggregate authentication code in a memory
device, wherein the aggregate authentication code is
configured to authenticate access to one or more ele-
ments in the memory space;

verifying the integrity of the list by comparing a newly

generated instance of an aggregate authentication code
over the memory elements to the stored aggregate
authentication code; and

discarding the memory elements if the integrity verifica-

tion fails.

2. The method of claim 1, wherein verifying the integrity
of the list is triggered by expiration of a time-based interval
or counter-based between verifications.

3. The method of claim 2, wherein the interval between
verifications is periodic and aperiodic based on a respective
periodic timer, an aperiodic timer, an event counter and an
external event.

4. The method of claim 1, wherein the list of inputs
associated with the memory elements in the memory space
is initialized and a number of inputs thereof changes over
time.

5. The method of claim 1, wherein verifying the integrity
of the list is performed at an interval greater than a plurality
of accesses of the memory elements in the list.

6. The method of claim 1, wherein the integrity of the list
of elements is verified instead of checking the integrity of
each individual memory element when it is accessed.

7. The method of claim 1, further comprising:

discarding the individual authentication codes for the

elements in the list after the aggregate authentication
code is obtained.

8. The method of claim 1, further comprising:

verifying the integrity of the list by checking that each

memory element in the list satisfies one or more
constraints.

9. The method of claim 1, wherein the memory elements
are defined within a single memory heap region organized
through the use of a meta-data structure.

10. The method of claim 9, wherein each memory element
is a fixed-length data structure within a header block com-
prising meta-data information.

11. The method of claim 1, wherein the individual authen-
tication codes are combined by a reversible operation.

12. The method of claim 1, further comprising:

updating the aggregate authentication code when a

memory element in the list changes by:

removing the previous individual authentication code
for the changed memory element from the aggregate
authentication code; and

adding a new individual authentication code for the
changed memory element to the aggregate authenti-
cation code.

13. The method of claim 1, further comprising:

updating the aggregate authentication code when a

memory element is removed from the list by:

removing the previous individual authentication code
for the removed memory element from the aggregate
authentication code.

14. The method of claim 1, further comprising:

updating the aggregate authentication code when a new

memory element is added to the list by:

adding a new individual authentication code for the
new memory element to the aggregate authentication
code.



US 9,443,107 B2

15

15. The method of claim 1, wherein the aggregate authen-
tication code is stored in a secure memory location, and the
individual authentication code for each memory element is
obtained by:
obtaining a bounded list of n inputs associated with the
memory element, where each input has a length of less
than or equal to L;

obtaining a prime number p, where p>L;

generating a plurality of random keys, each key distrib-
uted within the range of O to p-1;

combining each key in a subset of keys with a corre-
sponding input in the list of n inputs to obtain a
plurality of transitory values; and

combining the plurality of transitory values and at least

one unused key to generate the individual authentica-
tion code.
16. The method of claim 15, wherein each key in the
subset of keys and the corresponding memory element in the
list are combined by a multiplication.
17. The method of claim 15, wherein the plurality of
transitory values are combined by adding them together and
performing a modulo p operation over the result.
18. The method of claim 15, wherein the prime number p
is prefixed and the plurality of random keys is pre-generated
upon start-up of a processing circuit or initiation of a session
on the processing circuit.
19. The method of claim 15, wherein the plurality of
random keys are used for a plurality of aggregate of veri-
fication codes associated with different distinct lists of
memory elements.
20. The method of claim 1, wherein
if the aggregate authentication code is stored in an inse-
cure memory location, the aggregate authentication
code is further protected by a mask prior to storage, and

if the aggregate authentication code is stored in a secure
memory location, the aggregate authentication code is
stored without masking.

21. A device comprising:

a memory device to store a list of inputs associated with

memory elements in a memory space;

a processing circuit coupled to the memory device, the

processing circuit configured to

generate an individual authentication code for each

memory element in the list by combining a random key
with a corresponding input in the list using a first
operation;

generate an aggregate authentication code by combining

the individual authentication codes for each memory
element in the list using a second operation;

store the aggregate authentication code in the memory

device, wherein the aggregate authentication code is
configured to authenticate access to one or more ele-
ments in the memory space;

verify the integrity of the list by comparing a newly

generated instance of an aggregate authentication code
over the memory elements to the stored aggregate
authentication code; and

discard the memory elements if the integrity verification

fails.

22. The device of claim 21, wherein verifying the integrity
of the list is triggered by expiration of a time-based interval
or counter-based between verifications.

23. The device of claim 21, wherein verifying the integrity
of the list is performed at an interval greater than a plurality
of accesses of the memory elements in the list.

10

15

20

25

30

35

40

45

50

55

60

65

16

24. The device of claim 21, wherein the integrity of the list
of elements is verified instead of checking the integrity of
each individual memory element when it is accessed.

25. The device of claim 21, wherein the processing circuit
is further configured to discard the individual authentication
codes for the elements in the list after the aggregate authen-
tication code is obtained.

26. The device of claim 21, wherein the processing circuit
is further configured to

verify the integrity of the list by checking that each

memory element in the list satisfies one or more
constraints.
27. The device of claim 21, wherein the memory elements
are defined within a single memory heap region organized
through the use of a meta-data structure.
28. The device of claim 21, wherein each memory ele-
ment is a fixed-length data structure within a header block
comprising meta-data information.
29. The device of claim 21, wherein the processing circuit
is further configured to
update the aggregate authentication code when a memory
element in the list changes by: removing the previous
individual authentication code for the changed memory
element from the aggregate authentication code; and

adding a new individual authentication code for the
changed memory element to the aggregate authentica-
tion code.
30. The device of claim 21, wherein the processing circuit
is further configured to
update the aggregate authentication code when a memory
element is removed from the list by:
removing the previous individual authentication code
for the removed memory element from the aggregate
authentication code.
31. The device of claim 21, wherein the processing circuit
is further configured to
update the aggregate authentication code when a new
memory element is added to the list by:
adding a new individual authentication code for the
new memory element to the aggregate authentication
code.
32. The device of claim 21, wherein the aggregate authen-
tication code is stored in a secure memory location, and the
individual authentication code for each memory element is
obtained by:
obtaining a bounded list of n inputs associated with the
memory element, where each input has a length of less
than or equal to L;

obtaining a prime number p, where p>L;

generating a plurality of random keys, each key distrib-
uted within the range of 0 to p-1;

combining each key in a subset of keys with a corre-
sponding input in the list of n inputs to obtain a
plurality of transitory values; and

combining the plurality of transitory values and at least

one unused key to generate the individual authentica-
tion code.

33. The device of claim 32, wherein each key in the subset
of'keys and the corresponding memory element in the list are
combined by a multiplication.

34. The device of claim 32, wherein the plurality of
transitory values are combined by adding them together and
performing a modulo p operation over the result.

35. A device, comprising:

means for defining a list of inputs associated with memory

elements in a memory space;



US 9,443,107 B2

17

means for generating an individual authentication code
for each memory element in the list by combining a
random key with a corresponding input in the list;

means for generating an aggregate authentication code by
combining the individual authentication codes for each
memory element in the list;

means for storing the aggregate authentication code in the

memory device, wherein the aggregate authentication
code is configured to authenticate access to one or more
elements in the memory space; and

means for verifying the integrity of the list by comparing

a newly generated instance of an aggregate authenti-
cation code over the memory elements to the stored
aggregate authentication code; and

means for discarding the memory elements if the integrity

verification fails.
36. The device of claim 35, wherein verifying the integrity
of the list is triggered by expiration of a time-based interval
or counter-based between verifications.
37. The device of claim 35, wherein the aggregate authen-
tication code is stored in a secure memory location, and the
individual authentication code for each memory element is
obtained by:
obtaining a bounded list of n inputs associated with the
memory element, where each input has a length of less
than or equal to L;

obtaining a prime number p, where p>L;

generating a plurality of random keys, each key distrib-
uted within the range of O to p-1;

combining each key in a subset of keys with a corre- 3¢

sponding input in the list of n inputs to obtain a
plurality of transitory values; and

18

combining the plurality of transitory values and at least
one unused key to generate the individual authentica-
tion code.

38. A non-transitory processor-readable storage medium

5 having one or more instructions which when executed by at

least one processing circuit causes the at least one process-
ing circuit to:
define a list of inputs associated with memory elements in
a memory space;

generate an individual authentication code for each
memory element in the list by combining a random key
with a corresponding input in the list using a first
operation;

generate an aggregate authentication code by combining

the individual authentication codes for each memory
element in the list using a second operation;

store the aggregate authentication code in the memory

device, wherein the aggregate authentication code is
configured to authenticate access to one or more ele-
ments in the memory space;

verify the integrity of the list by comparing a newly

generated instance of an aggregate authentication code
over the memory elements to the stored aggregate
authentication code; and

discard the memory elements if the integrity verification

fails.

39. The non-transitory processor-readable storage
medium of claim 38, wherein verifying the integrity of the
list is triggered by expiration of a time-based interval or
counter-based between verifications.

#* #* #* #* #*



